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Abstract. The vibrational excitation differential cross-sections (DCS) of low-energy electron-N2 scattering
are studied using vibrational close-coupling (VCC) method and vibrational scattering potentials which
include static, exchange and polarization contributions. By including the contributions of 18 partial waves,
20 vibrational states, and 16 molecular symmetries (up to Λ = 7), the converged vibrational excitation
(0 → 2, 0 → 3, 0 → 4) DCS agree well with experimental results. Also obtained are converged vibrational
(1 → 0, 1 → 1, 1 → 2, 1 → 3) DCS, with the impact energies being those of the main resonant peaks
(1.92 eV, 1.90 eV, 1.62 eV, 1.63 eV).

PACS. 34.80.Bm Elastic scattering of electrons by atoms and molecules

1 Introduction

Differential cross-sections show the characteristic struc-
ture and kinetic information of incident particles and
target. N2 is a typical small nonspherical molecule be-
tween two-electron molecule H2 and other multi-electron
molecules, it has long been a fertile field for investigations
of low-energy electron scattering. Studies on this field are
important to astrophysics, meteoric physics, solid physics,
chemical physics, gas-discharge devices, and the modeling
of laser kinetics [1–5].

There have been many important theoretical and
experimental studies on electron-N2 collisions. The
representative theories are: the Schwinger variational
method of Mckoy and Huo [6,7], the hybrid theory of
Weatherford and Temkin [8], the R-matrix method of
Burke and Gillan [9], the boomerang model of Dube
and Herzenberg [10], and the close-coupling method of
Morrison and Saha [11]. In 1995, Weiguo Sun, Morrison,
Buckman, and coworkers [12] reported their comprehen-
sive studies on the 0 → 0 and 0 → 1 vibrational cross-
sections of electron-N2 scattering using vibrational close-
coupling (VCC) method theoretically, and cross beam
method and time of flight (TOF) method experimentally.
Excellent agreement between their theoretical and experi-
mental results has been attained, and an effective protocol
has been suggested to systematically compare theoreti-
cal and experimental differential cross-sections (DCS) of
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electron scattering form molecules in resonant region. Re-
cently, Hao Feng, Weiguo Sun and Morrison [13] proposed
a model correlation-polarization potential for vibrational
excitation in electron-molecule scattering, based on the
work of Bouferguene [14]. They regard the scattering elec-
tron as a spherical charge density that decays with radial
distance from re.

Vibrational differential cross-sections play an impor-
tant role in the field of discharge physics studies [15,16].
Allan measured the vibrational DCS of electron-N2 scat-
tering using cross beam method [6]. His data have
about 30% error and have notable difference with Wong’s
experiment [10], Error from Sweeney’s experiment [17]
is 23%. Therefore, it is necessary to do further study on
vibrational differential cross-sections.

Most of the previous studies on electron-N2 scatter-
ing only demonstrated target (N2) in ground state. Up
to now, we haven’t found any experimental report about
differential cross-sections when the target (N2) in excited
state. In this paper, some results of our studies on the dif-
ferential cross-sections (1 → 0, 1 → 1, 1 → 2, 1 → 3) are
reported.

2 Theory

From the Schrödinger equation, using the fixed nuclei ori-
entation (FNO) approximation, denoting the entrance-
channel by the subscript 0 and exit-channel by the sub-
script υ, the integral-differential equation of vibrational
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close-coupling can be expressed as follow [18]
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here k2
0/2 is the entrance-channel energy of incident elec-

tron, k2
υ/2 is the exit-channel energy of it, ευ is the energy

of the υth vibrational state, ε0 is the energy of ground
state.

The matrix elements of the total interaction potential
energy can be expressed as

V Λ
υl,υ′l′(r) = 〈υ, l; Λ|Vtot(r, R)|v′, l′; Λ〉R,r . (3)

In this paper, total interaction potential Vtot(r, R)
contains three components: static potential, exchange po-
tential and correlation-polarization terms [19,20], it is ex-
panded in terms of Legendre polynomial

Vtot(r, R) = Vst +Vex +Vcp =
∞∑

λ=0

′
vλ(r, R)Pλ(cos θe) (4)

where the prime signifies that for homonuclear targets this
sum includes only even values of λ, vλ(r, R) is Legendre
projection. The static term Vst arises form Coulomb inter-
actions between the projectile and the constituents of the
target. The exchange term Vex rises from the antisym-
metrization requirement of the electron-molecule wave-
function. The correlation-polarization term Vcp arises from
many-body correlation and induced polarization effects.
These potentials are nonspherical. The exchange and the
polarization potentials are nonlocal in nature, and they
are calculated using local approximation in this study. The
tuned free electron gas exchange (TFEGE) model [12] is
used for the exchange potential. The basic physics of the
TFEGE is that all electrons move in an average potential,
and the TFEGE is calculated from the charge density ob-
tained using quantum mechanical ab initio method. The
better than adiabatic dipole (BTAD) potential is used for
the correlation-polarization potential [12].

The angular integration in the potential matrix ele-
ments (3) is now easily performed using the Gaunt for-
mula
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where the angular coupling coefficient gλ(ll′; Λ) and the
radial vibrational coupling potential ωλ
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According to boundary conditions, we can get scattering
matrix K from (1),
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matrix S, matrix T , matrix K have the following relation,

SΛ = 1 + 2iT Λ = (1 + iKΛ)(1 − iKΛ)−1 (9)

while the swing of scattering can be expressed by matrix T
as follow,
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then the DCS is expanded in terms of Legendre polyno-
mial in the laboratory frame (LF) can be expressed as
follow,

dσ

dΩ
|υ0→υ ≡ 1

4k2
0
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where θ′ is the LF scattering angle, k0 is wave number
of incident channel, and BL(υ0 → υ) is the expansion
coefficient,
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T Λ

υl,υ0l0
is matrix element T of vibrational scattering,

dL(ll0, l̄l̄0; ΛΛ̄) is angular momentum coupling coefficient,

dL(ll0, l̄l̄0; ΛΛ̄) = il0−l−l̄0
1
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where C is Clebsch-Gordan coefficients.

3 Computational method

All fundamental vibrational scattering information is in-
cluded in equation (1). Solving this equation, the first step
is converting it into the second type Volterra equation, and
then calculating it numerically using the Green’s function
method of integral equation from the origin to the asymp-
totic region of the scattering system.

The dimension of the radial wavefunctions matrix of
the vibrational coupling equation (1) is “nv × nl” when
“nv” vibrational wavefunctions and “nl” partial waves
are specified. More partial waves is required to converge
the numerical radial scattering wavefunctions uΛ

υl,υ0l0
(r)

near the target (small r) due to strong centrifugal po-
tential and nonspherical static potential, while less par-
tial waves may converge the calculation in the asymp-
totic scattering (large r) region. The number of partial



W. Dai et al.: Studies on vibrational excitation differential cross-sections 387

Table 1. Vibrational differential cross-sections (in square Bohr) of low-energy electron scattering from N2, energies are chosen
to represent the peaks of oscillations in cross-sections.

Angle 2.10 eV 1.92 eV 1.90 eV 1.62 eV 1.63 eV
(deg.) (0 → 2) (0 → 3) (0 → 4) (1 → 0) (1 → 1) (1 → 2) (1 → 3)

0 1.1551 1.1675 0.4908 5.7749 7.7754 4.5371 1.7899
5 1.1345 1.1467 0.4821 5.6731 7.7649 4.4562 1.7578

10 1.0744 1.0861 0.4566 5.3769 7.7437 4.2211 1.6648
15 0.9808 0.9915 0.4168 4.9126 7.7157 3.8537 1.5198
20 0.8626 0.8721 0.3666 4.3225 7.6407 3.3882 1.3365
25 0.7308 0.7388 0.3106 3.6607 7.4484 2.8679 1.1322
30 0.5973 0.6038 0.2538 2.9873 7.0969 2.3402 0.9252
35 0.4735 0.4785 0.2011 2.3616 6.6103 1.8515 0.7332
40 0.3693 0.3729 0.1567 1.8343 6.0620 1.4413 0.5714
45 0.2917 0.2943 0.1237 1.4418 5.5289 1.1382 0.4509
50 0.2443 0.2462 0.1035 1.2028 5.0568 0.9566 0.3774
55 0.2274 0.2289 0.0963 1.1174 4.6526 0.8965 0.3510
60 0.2375 0.2389 0.1006 1.1684 4.2994 0.9438 0.3664
65 0.2681 0.2697 0.1136 1.3244 3.9787 1.0733 0.4138
70 0.3110 0.3130 0.1318 1.5437 3.6841 1.2515 0.4802
75 0.3569 0.3594 0.1514 1.7804 3.4200 1.4418 0.5513
80 0.3971 0.4002 0.1685 1.9899 3.1898 1.6087 0.6137
85 0.4243 0.4278 0.1802 2.1351 2.9885 1.7229 0.6559
90 0.4337 0.4376 0.1843 2.1915 2.8039 1.7651 0.6706
95 0.4238 0.4279 0.1801 2.1499 2.6261 1.7283 0.6554

100 0.3962 0.4002 0.1685 2.0178 2.4562 1.6190 0.6127
105 0.3557 0.3595 0.1513 1.8184 2.3092 1.4558 0.5501
110 0.3096 0.3131 0.1317 1.5876 2.2086 1.2677 0.4788
115 0.2668 0.2698 0.1135 1.3691 2.1786 1.0899 0.4124
120 0.2364 0.2390 0.1005 1.2093 2.2374 0.9591 0.3654
125 0.2268 0.2290 0.0963 1.1501 2.3953 0.9090 0.3505
130 0.2444 0.2462 0.1036 1.2237 2.6553 0.9652 0.3775
135 0.2925 0.2942 0.1239 1.4476 3.0151 1.1417 0.4519
140 0.3711 0.3728 0.1570 1.8218 3.4656 1.4384 0.5735
145 0.4763 0.4783 0.2015 2.3281 3.9893 1.8410 0.7364
150 0.6011 0.6035 0.2543 2.9319 4.5586 2.3216 0.9295
155 0.7356 0.7385 0.3112 3.5853 5.1370 2.8418 1.1377
160 0.8683 0.8717 0.3674 4.2318 5.6831 3.3567 1.3430
165 0.9872 0.9911 0.4177 4.8125 6.1558 3.8191 1.5270
170 1.0812 1.0855 0.4575 5.2728 6.5198 4.1856 1.6726
175 1.1415 1.1461 0.4830 5.5683 6.7489 4.4209 1.7659
180 1.1623 1.1670 0.4918 5.6701 6.8271 4.5020 1.7981

waves in equation (1) is reduced to nl′ = 3 from nl = 18
at r = 6.0a0, which greatly reduces the computational
efforts used to propagate the numerical scattering func-
tions from r = 6.0a0 to the maximum scattering distance
rmax = 85.0a0; for re > 85.0a0, we used Born completion
to evaluate additional higher-order elements of the K ma-
trix required to converge the differential cross-sections.

The contributions of high-order angular momentum to
scattering quantities are mainly affected by the long range
correlation-polarization potentials which, although weak,
are important for long range scattering.

There is a twofold summation over molecular symme-
tries Λ in equation (12). The close-coupling K matrix and
the Born K matrix are calculated respectively according
to the above discussions for Σ and Π(Λ = 0, 1) sym-
metries of N2. Although the K matrices of high-order
symmetries of N2 may be neglected for integral cross-
sections, their contributions to the DCS of small angle

scattering are important. The scattering matrices of the
first four symmetries (σg, σu, πg, πu) are calculated by
VCC method, and those of other twelve “Born symme-
tries” by Born coupling method.

4 Results and discussion

Using the improved method of vibrational close-coupling,
DCS converge better than before. The converged vibra-
tional excitation DCS are obtained when using 20 Morse
vibrational states, 18 partial waves, and 16 molecular sym-
metries. The scattering matrices of the first four symme-
tries (σg , σu, πg, πu) are calculated by VCC method, and
those of other twelve “Born symmetries” by Born coupling
method. In our previous studies, we used nl = 11 at the
short range, it was not convergent enough for 0 → 2, 0 → 3
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Fig. 1. Vibrational excitation (0 → 2) differential cross-
sections of low-energy (2.10 eV) electron scattering from
N2 molecule.

Fig. 2. Vibrational excitation (0 → 3) differential cross-
sections of low-energy (2.10 eV) electron scattering from
N2 molecule.

and 0 → 4 vibrational excitations (see Figs. 1, 2 and 3),
here we enlarge the scattering channels and use nl = 18.

We compare our 2.1 eV impact DCS with those mea-
sured by Sweeney et al. [17] and Brennan et al. [21], the
impact energy 2.10 eV is the second resonant peak of
elastic scattering. Figure 1 shows the vibrational excita-
tion DCS of 0 → 2, the theoretical DCS of this study
agrees well with experimental data from Sweeney et al.
and Brennan et al. when scattering angle is higher than
45◦, from 0◦ to 45◦, Sweeney’s results have notable dif-
ference from Brennan’s experiment, remarkably, when the
scattering angle is small, the experiments of cross beam
have great challenge to measure accurately, Brennan’s is
high, Sweeney’s is low, and ours is in the middle. To so re-
markable difference between two experiments, it deserves
experimenter to explore a new way to measure DCS in
small angle. Displayed in Figure 2 are the DCS of 0 → 3,
our results agree with Sweeney’s experiment between 45◦
to 135◦, in areas of small and large angle, our DCS are

Fig. 3. Vibrational excitation (0 → 4) differential cross-
sections of low-energy (2.10 eV) electron scattering from
N2 molecule.

Fig. 4. Vibrational (1 → 0, 1, 2, 3) differential cross-sections of
low-energy electron scattering from N2 molecule. The impact
energies are those of the main resonant peaks (1.92 eV, 1.90 eV,
1.62 eV, 1.63 eV).

greater than those of Sweeney’s. Figure 3 compares reso-
nant DCS of 0 → 4 from our calculations with data from
Sweeney. Contrary to 0 → 3, at angles above 105◦, our
results are lower than those of experiment, and agree well
in other areas.

The vibrational DCS of υ = 1 → υ′ = 0, 1, 2, 3 are pre-
sented in Figure 4, With the impact energies being those of
the main resonant peaks-approximately 1.92 eV, 1.90 eV,
1.62 eV, 1.63 eV (1.92 eV is energy of the main resonant
peak for υ = 1 → υ′ = 0, 1.90 eV is energy of the main
resonant peak for υ = 1 → υ = 1, 1.62 eV is energy of the
main resonant peak for υ = 1 → υ′ = 2, 1.63 eV is energy
of the main resonant peak for υ = 1 → υ′ = 3). We obtain
converged vibrational excitation DCS when the target is in
excited state, which is difficult to get by experiment. The
DCS of υ = 1 → υ′ = 1 are bigger than others, though
they are not in the same impact energy, but all energies
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are in main peaks, they represent the largest probability of
scattering, which agree with principle of Franck-Condom.
That is, the probability of perpendicularity transition is
the greatest, usually the DCS of elastic scattering are big-
ger than those of inelastic scattering.

Generally, among all methods of studies on e–N2 scat-
tering, vibrational close-coupling (VCC) method is bet-
ter than others at the aspect of precision. It takes into
account the coupling among different vibrational states
during the process of scattering, and also describes the
vibrational process accurately. However the dipole polar-
ization approximation on polarization potential, and the
local approximation on nonlocal exchange and polariza-
tion potentials both influence the results by a certain
extent. At the same time, static potential, exchange poten-
tial and correlation-polarization are sensitive to wavefunc-
tion of molecular system. Though it is suitable to describe
molecular system of closed shell by single configuration
Hartree-Fock wavefunction, yet we had better adopt com-
prehensive wavefunction to reflect fine resonance struc-
ture. On the other hand, error from Christopher J.
Sweeney’s experiment is also up to 23%. All of those
enlarge the difference between theory and experiment.
Therefore, it is necessary to do further study on e–N2

scattering.
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